
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 4, 557-598 (1984) 

A MODIFIED FINITE ELEMENT METHOD 
FOR SOLVING THE TIME-DEPENDENT, 

INCOMPRESSIBLE NAVIER-STOKES 
EQUATIONS. PART 1: THEORY* 

PHILIP M. GRESHO, STEVENS T. CHAN, ROBERT L. LEE AND CRAIG D. WSON 

Atmospheric and Geophysical Sciences Division, Lawrence Liuermore National Laboratory, 
Livermore, CA 94550, U.S.A. 

SUMMARY 

Beginning with the Galerkin finite element method and the simplest appropriate isoparametric element 
for modelling the Navier-Stokes equations, the spatial approximation is modified in two ways in the 
interest of cost-effectiveness: the mass matrix is ‘lumped’ and all coefficient matrices are generated via 
l-point quadrature. After appending an hour-glass correction term to the diffusion matrices, the 
modified semi-discretized equations are integrated in time using the forward (explicit) Euler method in 
a special way to compensate for that portion of the time truncation error which is intolerable for 
advection-dominated flows. The scheme is completed by the introduction of a subcycling strategy that 
permits less frequent updates of the pressure field with little loss of accuracy. These techniques are 
described and analysed in some detail, and in Part 2 (Applications), the resulting code is demonstrated 
on three sample problems: steady flow in a lid-driven cavity at Res10,000, flow past a circular 
cylinder at Re 5400, and the simulation of a heavy gas release over complex topography. 
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1. INTRODUCTION 

We have developed a numerical method for solving the time-dependent, incompressible 
Navier-Stokes (NS) equations (or variants, such as the Boussinesq equations or the anelastic 
equations) and the advection-diffusion (AD) equation in two and three dimensions (2D and 
3D). Although the technique was originally derived via the conventional Galerkin finite 
element method (GFEM), we invoke two ensuing simplifying approximations that generate a 
scheme which is probably better described as a blend of finite elements and finite differences, 
i.e. an ‘isoparametric element, finite difference method’. 

The philosophy guiding the evolution of the techniques is a common one: simplicity and 
cost-effectiveness. Starting with the simplest GFEM approximation for spatial discretization, 
we invoke the simplest method for advancing the solution in time. We therefore use 
multilinear basis functions for the velocity (bilinear in 2D, trilinear in 3D) and (piecewise) 
constant approximation for the pressure. The explicit (forward) Euler method is then used to 
integrate the resulting ordinary differential equations (ODES) in time. 

The two a priori simplifications to the GFEM are: (1) the ‘mass matrix’, which couples the 
time-derivatives in the GFEM, is replaced by a diagonal matrix via ‘mass lumping’, thus 
decoupling the time derivatives and paving the way for explicit time integration, and (2) all 
Galerkin integrals are evaluated approximately by invoking one-point quadrature. (Some- 
times this evaluation is exact-see below.) We believe that these two ad hoc modifications, 
when combined with those discussed below, lead to a scheme which is generally more 
cost-effective (accuracy per unit cost) than that when GFEM is used (consistent mass, higher 
order quadrature and implicit time integration methods). In 2D, we have ample evidence to 
support this position since we also have our own GFEM code.’ We have no such evidence in 
3D, however, because we were afraid to extend our GFEM scheme to 3D-not that this 
cannot be done (e.g. Reference 2); our fear was related to our goal of attaining a real-time 
predictive capability for the atmospheric boundary layer. 
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The first simplification (mass lumping) also permits the maximum uncoupling of the NS 
equations and leads to a discrete Poisson equation for the pressure that is easy to generate 
and solve. Regarding the second simplification (1-point quadrature), we point out that for 
large time-dependent problems, especially in 3D (say lo4 nodes), the use of more accurate 
(higher-order) quadrature methods (typically Gauss-Legendre) can be quite impractical 
(cost-ineffective) even though most of the integrations are exact. Although the element 
matrices are not time-dependent, and could thus be generated once and for all, stored on 
disk, and retrieved every time they are needed, this proves to be quite expensive in 1/0 
(inputloutput) cost-at least on a CRAY-1 computer, for which the CPU (central processing 
unit) is very fast and the transfer rate of data (I/O) is relatively very slow. The alternative of 
(accurately) recomputing the Galerkin integrals at each time step would probably lead to 
even higher cost. Even more disappointing is the fact that typically little additional accuracy 
is gained, even with these heavy computational penalties, as has been recognized in the field 
of solid mechanics3, and will be partially demonstrated in this paper for fluid mechanics- 
especially when mass lumping is invoked. On the other hand, 1-point quadrature permits the 
rapid (approximate) evaluation of the Galerkin integrals 'on the fly' (whenever needed), 
which totally eliminates this portion of I/O, leads to efficient code vectorization, and has 
been found to reduce both I/O and CPU costs (in the 3D cases studied) by about an order of 
magnitude. 

Two additional modifications that provide further increase in computational speed are 
associated with the time integration of the ODES. The first of these is called balancing tensor 
diffusivity (BTD), or in particular, balancing tensor viscosity for the NS equations, and is 
used to permit larger time steps with no loss of accuracy-indeed, a gain in accuracy is often 
realized. The second is called subcycling, a procedure which permits less frequent updates of 
the pressure relative to the stability-limited processes of advection and diffusion. 

In the remainder of this paper, these techniques will be described in detail, analysed with 
respect to accuracy and stability, and (in Part 2) demonstrated via numerical examples. 

2. GOVERNING EQUATIONS AND BASIC SPATIAL DISCRETIZATION 

The governing equations of interest here are the NS equations for an incompressible, 
constant property fluid in the Boussinesq approximation. In dimensionless form these are 

&/at + II . Vn = -VP + Re-' V2n + Fr-'kT 

aTldt+u.VT=Pe-'V2T 
and 

v . n = o  

where = (u, u )  or (u, 'u, w) is the velocity, P is the pressure deviation from hydrostatic at the 
reference temperature, T is the temperature deviation from the reference temperature, 
Re = u&v is the Reynolds number, Fr = u;/(yATgL) is the Froude number (or an inverse 
Richardson number), k is the unit vector in the direction of gravity, and Pe = Re Pr = U&/K 

is the Peclet number (Pr = U/K is the Prandtl number). Also, uo is the reference (characteris- 
tic) velocity, L is the characteristic length, v = p / p  is the kinematic viscosity, K is the thermal 
diffusivity, y is the volumetric thermal expansion coefficient, AT is the characteristic 
temperature difference, and g is the gravitational acceleration. In (l) ,  the unit of length is L, 
that of time is L/uo, that of velocity is uo, that of pressure is pug, and that of temperature is 
AT. Of course for isothermal flows, the buoyancy term in (la) is dropped and (lb) is omitted. 
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Finally, for buoyancy-driven flows, the characteristic velocity (usually) is uo = J(ygL AT), 
Re = J(Ra/Pr), Fr = 1 and Pe = J(RaPr), where Ra = ygL3AT/w is the Rayleigh number. 
Given an initial temperature field, To(x), an initial velocity field, v(x) which satisfies V . v = 0 
(see Reference 1) and appropriate boundary conditions (BCs) for u and T (none are needed 
for P ;  see Reference l), equation (1) can be solved (in principal) for u, P and T as functions 
of space and time. 

The finite element spatial discretization of (1) is performed using the Galerkin method via 
the following expansions in the piecewise polynomial basis functions associated with the 
FEM, 

and 

where, in the discretized domain, there are N nodes for velocity and temperature and M 
elements. In (2), qi(x) is a Co piecewise multilinear basis function defined on isoparametric 
‘quadrilateral’ elements (bilinear in 2D and trilinear in 3D), &(x) is a piecewise constant 
basis function (unity on element i and zero on all other elements), and the superscript h 
indicates a finite dimensional approximation. Inserting (2) into the weak (Galerkin) form of 
(1) (see, e.g. reference l), which permits qi to be discontinuous in the first derivatives, +i to 
be discontinuous, and introduces the natural boundary conditions, leads to the following set 
of ODES with concomitant algebraic constraints (a differential-algebraic system4)-the 
GFEM equations, written here in compact matrix form: 

MU + K(u)u + CP = f, u(0) = uo where CTuo = 0 ( 3 4  

and 
M,T+ K,(u)T = fs, T(0) = To 

C T U  = o  
where now u is a global vector containing all the nodal values of u, 2) (and w),  P is a global 
pressure vector, and f is a ‘force’ vector which incorporates the buoyancy term and the 
natural BCs on velocity. M is the mass matrix (which we henceforth regard as lumped via 
(essentially) row-sum at element level), K ( u )  = N ( u )  + K is the ‘advection + diffusion’ matrix, 
where K is the ‘viscous’ or diffusion matrix and N ( u )  is the advection matrix, C is the 
gradient matrix and its transpose, CT, is the divergence matrix. In the A D  equation for 
temperature, the subscript s refers to similar, but smaller sets of coefficients, and T is a 
global temperature vector. 

Remarks 

(i) The natural BCs associated with V2u are different from those when the viscous terms 
are expressed in stress-divergence form (cf. Reference 1); they are generally just as 
useful, however. 

(ii) The initial velocity field must satisfy the discretely divergence-free condition rather 
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than the continuous one; this fact could, for example, preclude the use of the 
interpolant of a solenoidal field as an initial condition. 

To maximize the efficiency of code vectorization, the u and T vectors in (3) contain all of 
the nodal values, including those specified via Dirichlet BCs. To enforce these (essential) 
BCs, we replace the appropriate diagonal terms in the lumped mass matrices by a large 
number (say 10”) and replace the corresponding entries in the ‘force’ vectors with the 
products of the same large number and the time derivative of the specified variables 
(typically zero). 

In order to integrate (3) with an explicit method, we will need the discretized Poisson 
equation for the pressure. This is easily derived from (3a) and (3c) by noting that CTu = 0 
since CTu = 0 for all time, namely, 

(CTM%)P=AP = CTM-lCf- K(u)u] (4) 

where A CTM-’C is a discretized approximation to the Laplacian operator into 
which velocity BCs have been ‘automatically’ incorporated. It is a global matrix and 
must be so constructed, rather than being formed from element level matrices. This 
construction is quite simple and straightforward (more so via 1-point quadrature) since M-’ 
is a diagional matrix; furthermore, it need only be formed ‘once per problem’ since it is 
constant, and this is conveniently done in a preprocessor code. Equation (4) is a discrete 
approximation to the continuum Poisson equation, 

V z P  = Fr-l V . (kT) - V . (U . VU) ( 5 )  
which is implied by (la) and (lc). Just as ( 5 )  can be used in place of (1c) in the continuum, so 
can (4) be used in place of (3c); i.e. (3a) and (4) imply (3c). Since (4) approximates (S) ,  
implies (3c), and incorporates (automatically) the appropriate BCs for the pressure (recall 
that the original equations required BCs only for u and T), we refer to it as the consistent 
discretized Poisson equation for the pressure; see also Reference 5. 

If one or more pressures are to be specified (e.g. to set the hydrostatic pressure level 
and/or to avoid some of the effects associated with spurious pressure modes-cf. Reference 
6), the same technique discussed above is employed; namely replace the appropriate 
diagonal entries in A by a large number and replace the corresponding entries in the right 
hand side vector by the products of the same large number and the desired pressure values 
(again, typically zero). 

The final semi-discretized equations considered henceforth are thus (3a), (3b), and (4). 

3. ONE-POINT QUADRATURE AND ITS EFFECTS 

Before invoking 1-point quadrature, the element matrices associated with (3) and (4) are 
delineated: 

M;=8, bi dQ (64  I. 
where 8, is the Kronecker delta and the domain of integration is element e, 

N;(u) = qiuh. Vqj dQ I. 
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and 

where Re is replaced by Pe for the diffusion matrix in the temperature equation. 
Uk(Pk in (6c), it is clear that an integral of triple products is generally 

required to generate the non-linear advection matrix, N(u);  see Reference 1 for details. This 
costly procedure can be avoided (ostensibly with an additional loss of accuracy) by consider- 
ing another ad hoc (non-Galerkin) modification called 'centroid advection velocity', in which 
uh in (6c) is evaluated only at the element centroid, thus rendering it constant in the 
integrand and leads to 

Since nh 

N;(u) = i ik   pi aQj/aXk dR (64' I 
in which i i k  is the kth component of the average velocity in the element (i.e. the arithmetic 
average of the nodal values) and the summation convention on repeated indices is in effect. 

Remarks 

This short cut has the effect of changing the global advection approximation from a 
complex stencil of 2/3 centred differences, 1/6 upwind differences and 1/6 downwind 
differences, (at least in 2D on a regular mesh') to a simpler stencil with the same type 
of weighting. It may, however, introduce some aliasing error in contrast to honest 
GFEM, which does not.' 
When 1-point quadrature is employed, both (64 and (6c)' lead to identical results; the 
stencil is then a simple combination of 1/2 centred, 114 upwind and 1/4 downwind 
differences, a result which is easily stated in words (for 2D and 3D): the average 
(centroid) velocity over an element is multiplied by the average gradient (of the 
advected variable) within the element and this result is averaged over the number of 
elements sharing the node in question. On irregular or distorted meshes, the interpre- 
tation is similar except that area (or volume)-weighted averages are employed in the 
final averaging step. 

As a potential basis for comparision, Table I presents the GFEM 'required' quadrature 
rules' for the elements under consideration. Using only these results as a yardstick, it would 
appear that 1-point quadrature is nearly indefensible-especially in 3D. It turns out to be 
not nearly so bad, however, when the final results are examined from a finite difference 

Table I. Number of Gauss points required in each coordinate direction to 
evaluate various element matrices (and element size, s1") exactly 

Elements 

Rectangle and General Brick and General 
Matrices parallelogram quadrilateral parallelepiped hexahedron 

M" 1 2 1 2 
K' 2 >3* 2 >3* 
w 2 2 2 2t 

C" (and C) 1 1 1 2 

* It is not generally possible to evaluate K' exactly using Gauss quadrature, 
t A 3-point rule is required if (6c) is used rather than (fk)'. 



A MODIFIED FINITE ELEMENT METHOD, PART 1 563 

viewpoint, e.g. most of the approximations are ‘Taylor-series legitimate’-at least on regular 
meshes. 

The principal arguments in favour of 1 point quadrature are based on the fact that it can 
be made to perform in a cost-effective manner, i.e. it does work.” It seems appropriate at 
this point to present our definition of 1-point quadrature and to explain the computational 
economies accruing from it. First we compute each element ‘size’ (area or volume) exactly 
(which generally requires 2-point quadrature in 3D-see Table I) and store the resulting 
vector in memory. Then the 1-point element matrices are constructed (in principle, but see 
below) by evaluating the appropriate integrand at the element centroid and multiplying this 
result by the element size. However, since the integrands in the advection and diffusion 
matrices involve first derivatives of the basis functions, they can be obtained from the 1-point 
quadrature C-matrix, half of the entries of which (owing to the antisymmetric nature of the 
shape function derivatives at element centroids) are stored in memory. In the following 
sections, we will discuss the individual ‘matrix construction’ in more detail, perform some 
relevant error analyses which, among other things, reveal the major deficiency of 1-point 
quadrature, and present a simple and effective remedy for this problem. 

3.1. Element volume (or area) and mass matrix 

Since it has been claimed” that convergence of the FEM requires, among other things, an 
exact integration of element size, and because the extra cost of doing so is negligible, we 
integrate the element size exactly (2 la Table I). This need be done only once, in a 
preprocessor code, and the results are stored in memory as a single vector (as mentioned 
above). Each element size is then distributed equally to the associated nodal points to form 
the global, lumped mass matrix, another vector which is stored in memory. 

Remarks 

(i) If the mesh is composed of simply-shaped elements, the result is truly the same as that 
using ‘row-sum’ lumping. For distorted elements, the results will differ somewhat, to 
the extent of the distortion-which should be kept as small as possible in general; see 
also Reference 12. 

(ii) The true row-sum technique could be easily employed for any element shape, simply 
by using a 2-point rule in (6a), at little extra cost (in the preprocessor); we probably 
should, but have not yet, implemented this option. 

(iii) If steady-state solutions are obtained, the results are (necessarily) independent of any 
mass lumping procedure. 

3.2. Divergence and gradient matrices 

One-point quadrature on (6d) is exact for 2D general quadrilaterals and for 3D elements 
of simple shape. In these cases, both element level (2 la (3c)) and global mass balances are 
maintained. For distorted 3D elements, however, element level mass balance is not guaran- 
teed and, as a result, global mass conservation cannot be assured. Nevertheless, it appears 
(from our experience) that for meshes consisting of only mildly distorted elements, the mass 
imbalance is probably tolerable in that it does not seem to adversely affect the overall quality 
of the solution. For a 3D mesh consisting of many highly distorted elements, however, 
prudence would suggest that 2-point quadrature be employed on the C-matrix. (Prudence 
would also suggest, however, that such meshes be avoided.) The cost of these better results is 
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a loss in code efficiency and additional storage (in memory or on disk) is required. 
In order to gain further insight into the divergence approximation, we performed a Taylor- 

series-like analysis to determine how well V . u is approximated at the element centroid (both 
1-point and 2-point quadrature were tested in 3D). By inserting increasingly higher order 
polynomials into the stencil associated with (3c) and (6d) and dividing the result by the 
element size, the accuracy of the difference operator is obtained by noting when the result is 
exact. We found that the accuracy is O(h2) and O(h) for simply-shaped and distorted 
elements, respectively, in both 2D and 3D, even though 1-point quadrature is inexact for 
distorted 3D elements. 

The accuracy of the approximation to the pressure gradient, however, is generally one 
order lower than that of the divergence of the velocity field and, significantly, is (in 2D) 
independent of the Gauss rule used. Also, unlike the divergence operator, analysis of the 
gradient operator requires a ‘patch’ of elements, rather than a single element. Accordingly, 
we have performed Taylor-series analyses on various 4-patches in 2D (wherein 1-point 
quadrature is exact) with the following results: 

(i) The error in the VP approximation is O(h2) on a uniform mesh of equal-sized 

(ii) It is O(h)  on a general rectangular mesh. 
(iii) It is 0(1) on a mesh of distorted elements, a rather disconcerting ~bserva t ion .~~*’~  

This means, for example (in a Taylor-series sense) that the intended approximation to 
aP/ax, would actually look more like [l+O(~)]dP/ax+O(~)aP/ay, where E is a 
measure of the grid distortion ( E  = 0 for parallelograms); this error could be quite 
serious if the distortion is large and if dP/ay >> aP/ax, the latter of which often occurs in 
buoyancy-affected flows. 

rectangles (and pure rotation does not degrade the accuracy). 

Although we have not extended this analysis to 3-D, we believe that there would be no 
surprises. 

These results, most of which relate to the use of piecewise-constant pressures rather than 
to any additional problems associated with 1-point quadrature, are somewhat ameliorated by 
the following additional points: 

(i) In all numerical studies involving mesh refinement, the pressures (and the velocities, of 
course) seemed to converge even when the ultimate mesh would involve distorted 
elements. It is true, however, that a coarse grid of distorted elements can generate 
large errors in V P  (and thus in a), a point we will return to when we discuss numerical 
results. 

(ii) Consistency in a Taylor-series sense is a sufficient, but not necessary condition for 
~0nvergence.l~ 

Indeed, one may even argue that Taylor-series analyses are inappropriate for finite 
element schemes (they are rarely, if ever, used in mathematical analyses of error and/or 
convergence)-see also Reference 13. We believe, however, that results from all types of 
error analyses are useful and should be taken into account, but that the ultimate test is ‘in 
the field’-how well does the method perform on a wide variety of problems? The foregoing 
results suggest that simulations in which the elements are of simple shapes (with gradual 
grading of element size; Ahlh << 1) are likely to be much more accurate than those with 
distorted elements-and our experience seems to support this viewpoint. 
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3.3. Advection matrix. 

The 1-point quadrature C-matrix is used extensively and effectively to directly construct 
the advection (and diffusion, discussed later) contributions in (3), i.e. the element level 
advection (and diffusion) matrices are never explicitly formed. Rather, the entire advection 
contribution associated with a particular element is computed as shown below. First, 
however, we must apply 1-point quadrature to the C-matrix in (6d), to obtain 

c!:) - ( a 4 i / d x k ) O f i e  (6d)' 

where ( denotes centroid evaluation and f i e  is the eth element of an M-vector containing 
the element sizes. Using the temperature equation for demonstration, and invoking the 
summation convention on repeated indices, 1-point quadrature on (6c)' leads to (upon 
multiplication by the T vector) 

N'j?;. = ii T   pi a'p i /dXk dfi 
il, 

= %(O)i ik?; . (a(Pi /aXk)O% 

= 'pi (0) Ok (aT/aXk ) o n e  

= -qi(o)&Cljek)T (6c)" 

Remarks 

(i) Since qi(0) is a constant for all i (1/4 in 2D and 1/8 in 3D), the final result in (6c)" is 
seen to be (effectively) a simple scalar; this result is then distributed to each node in 
element e. 

(ii) The centroid gradient, (aT/axk),, will be seen to be also useful in the evaluation of the 
diffusion term. 

We now examine the accuracy associated with this advection approximation. A standard 
way to compare advection schemes is via Fourier analysis of the constant-velocity, pure 
advection equation (Pe = w and u is constant in (lb)): a given wave (with wave number 
vector k = (kl, k,) or k =  (kl, k2, k3) with wavelength h = 2 ~ / ( k l )  is placed on the infinite span 
(or on a finite domain with periodic boundary conditions) and the resulting solution obtained 
from the approximate scheme is compared with the exact solution. A complete analysis 
involves the consideration of all possible (i.e. mesh-resolvable) wave numbers and a 
comparision of both phase and group velocities;16 herein we will be content with a special 
case (described below) which is probably (we hope) adequate for the purpose of comparison. 
If a periodic function of the form 

is taken as an initial condition, the exact solution to the pure advection form of (lb) is 

where 
T(x, t )  = To(x)e-'"' 

o=Cqki  
i 
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is the frequency. The phase speed, c, is given by 

c = w/(kl= w / ( $ .  kf)'" (9) 

The phase speed is the projection of u onto k and measures the wave speed along the wave 
direction. Now if the same initial wave is placed on a uniform rectangular mesh (a 4-patch 
analysis in 2D) over which the advection operator (u. V) has been approximated (e.g. via 
FEM or FDM), the resulting frequency (and phase speed, and group velocity) will differ from 
that given by (Sb), owing to numerical dispersion; i.e. the semi-discretized solution will be 
given by an equation similar to (8a) with w replaced by C;, where, for non-dissipative schemes 
of the type considered herein, d is real. We have performed this analysis and present a 
summary of the results. The ratio of W/w (or ?/c where F is the approximate phase speed) is 
displayed in functional form in Table I1 and shown in Figure 1 for the special case wherein 
the wave number vector is chosen so that kj AX, = p is constant, where Axi is the mesh size in 
the jth direction and the following nomenclature is adopted: FD is the simplest centred- 
difference approximation to the advection operator and the others are the four possible 
combinations of using either consistent mass (C) or lumped mass (L) in conjunction with 
either 1-point (exact in 1D) or 2-point (always exact) quadrature for the advection matrix. 
Also shown in Table I1 is the local truncation error, (Yc - 1) as Axi -+ 0 for fixed k. 

Remarks 

For 1D problems, since 1-point quadrature is exact for the advection matrix, the 
difference in the FEM phase speeds depends only on the type of mass matrix being 
used. When consistent mass is used, the finite elment method with linear approxima- 
tion is fourth-order accurate; however, when mass lumping is employed it degrades to 
the centred, second-order finite difference scheme (L1= L2 = FD). 
The GFEM scheme, C2, is clearly the most accurate, and it retains fourth-order 
accuracy in all space dimensions. This scheme, however, is not considered to be 
viable using isoparametric elements, at least with the current computer capacity, for 
solving large time-dependent problems (especially in 3D). 
The lumped mass schemes are inferior to the finite difference scheme, especially in 
3D (note that only C2 and FD have phase speeds that are independent of n). 
Mass lumping induces much larger errors than those caused by reduced quadrature. 
The popular second-order Arakawa scheme17 is equivalent, for the case of pure 
advection, to  the L2 scheme. 

Table TI. Phase speeds and truncation errors associated with various discrete approximations to 
the pure advection equation in n space dimensions ( p  = k, Ax,) 

Properties 

Leading truncation error terms 
Approximation Relative phase speed, Elc n = l  n = 2  n = 3  

c 2  [3@+ cos p)l(sin PIPI -p4/180 -p4/180 -p4/180 
C l  [31(2+cos p)l"[(l+cos p)/21n-'(sin p l p )  -p4/180 -pz/12 -p2/6 

L1 
m sin PIP - p 2 / 6  -p2/6 -p2/6 

L2 [(2+cos pj/3]"-'(sin p/p) -p216 -p213 -p2/2 
[(I + cos p)/2l"-.l(sin p i p )  - p 2 K  - 5 ~ ~ 1 1 2  -2p2/3 
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PIT d n  

Figure 1. Phase speed vs wave number for various discrete approximations to the pure advection equation in (a) 2D 
and (b) 3D 

(vi) The L1 scheme has recently been derived (by finite difference methods) and advo- 
cated by Smolarkiewicz;" albeit only in conjunction with the explicit Euler time 
integration scheme in which the balancing tensor diff usivity (BTD) improvement (see 
section 4.3) is also employed. 

(vii) Our L1 scheme will be shown (section 4.3) to have a more accurate phase speed 
when a particular time integration scheme is employed. 

3.4. Difision matrix 

using the temperature equation as our example, we evaluate (cf. (6b)) KGIT;- as follows: 
The diffision contributions are also efficiently evaluated via the C-matrix in (6d)'; again 

Remarks 

(i) The centroid gradient appears again; it is thus constructed only once and used to compute 

(ii) Owing to antisymmetry in the first derivatives, (6b)' needs to be evaluated for only half 

In order to (partially) assess the performance of 1-point quadrature relative to other 
schemes in approximating the diffusion (V2) operator, we again present some results from 
Fourier analysis, this time applied to the transient heat equation, 

both the advection and diffusion contributions in each element. 

of the nodes in each element. 

aT -=a V2T 
at 
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If a periodic function of the form given by (7) is again taken as an initial condition, the exact 
solution to (10) is 

T(x, t )  = To(x)e-@' (1 1) 

where p = a Cj k; .  For a spatially-discretized version of (lo), a (uniform) 4-patch analysis 
will lead to the effective diffusivity, 6, by using the same wave as in (7), but with @ = 6 Cj k: 
in (11). Unlike the constant true diffusivity, a! is a function of wave number and is close to a 
only for long waves (i.e. small lkl). For simplicity, we again take p = ki Axi =constant. The 
results, in the form of E ( p ) / a  vs. p, are shown in Table I11 and Figure 2 (the curves labeled 
LH will be discussed later). The last three columns display (6/a - 1) as Axj -+ 0 for fixed k; 
this is the truncation error. 

Remarks 

All schemes except one are now second-order accurate. The exception is C1, which is 
fortuitously fourth-order accurate in 2D. (We include this seemingly impractical case 
only to further demonstrate the point that mass lumping is generally more deleterious 
than the use of 1-point quadrature.) 
Again, the GFEM result (C2) is probably the best. It over-diffuses short waves 
(indeed, all waves), which is probably desirable in most simulations because these 
waves are more difficult to resolve, are too slowly advected, and presumably (or 
hopefully) contribute less to the overall solution accuracy. 
Again, the multidimensional lumped mass results are inferior to  those from simple 
finite differences; they are more under-diffusive. 
Again, the depression of the curves from C2 is caused more by mass lumping than by 
1 -point quadrature. 
The above remarks are irrelevant at steady state, for which 1-point quadrature usually 
performs quite well in practice. 
The biggest problem with 1-point quadrature is revealed at p = r r :  the diffusion matrix 
is singular with respect to '2Ax' waves, a result which is independent of the mass 
matrix. Since these waves are neither diffused nor advected, they can cause a serious 
problem in the form of undamped, spurious spatial oscillations, i.e. wiggles. 

In the next section, we describe these 'zero energy modes', which are null vectors of the 
diffusion matrix, and present a method for overcoming this deficiency. 

3.4.1. Definition and control of 26x waves. Since the 'patch job' for these undiffused 
waves was transferred from the solid mechanics community, it may be appropriate to also 

Table 111. Summary of effective diffusivity for various approximation schemes ( n  = 1, 2 or 3 is 
the number of space dimensions) 

Properties 

Leading truncation error terms 
Approximation Ocla n = l  n = 2  n = 3  

~ ~~~~~ 

c 2  [3/(2+cOs p)]2(1-co~ p)/p2 p2/12 p2/12 pz/12 
c1 [3/(2+cos p)l"[(1 +cos p)/21"-'2(1 -cos p)/p" p2/12 -p4/90 -p2/12 
L2 [(2+COS p)/3In-l2(1 -cos p)/p2 -p2/12 -p2/4 -5pz/12 
L1 [(1+ cos p)/2In-l2(1 - cos p)/p2 -p2/12 -p2/3 -7p2/12 
FD 2( 1 - cos p)/p2 -p2112 -p2112 -p2/12 
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Figure 2. Effective diffusivity vs wave number for various discrete approximations to the transient heat equation in 
(a) 2D and (b) 3D 

first describe them in this language: in the Lagrangian FEM codes of solid mechanics, the 
problem is described in terms of the so-called hour-glass patterns and is interpreted in terms 
of zero energy mode  shape^.^.^^^^^ In fluid mechanics, using an Eulerian reference frame, 
however, it seems more appropriate to describe the problem in terms of ‘2Ax’ waves, 
although it is indeed the same ‘problem’. 

In 2D, there is only one 2Ax wave (more properly and more generally, it is a 2Ax by 2Ay 
wave), which has alternating nodal values of *l. The 1-point diffusion matrix annihilates this 
‘oscillating’ vector, which is of course just another way to say that the matrix is singular and 
that =tl is a vector in the null space. We also remark that this mode has much in common 
with the spurious chequerboard pressure mode discussed by Sani et aL6 

In 3D, however, there are four null vector waves, one of which is 28x by 2Ay by 2Az 
(fully three-dimensional with nodal values of z t l ) ;  the other three are two-dimensional, one 
in each plane. These four vectors, which are orthogonal to  each other, are shown (schemati- 
cally) in Figure 3. As in 2D, it is a simple matter to  verify that the 1-point element-level 
diffusion matrix annihilates each of these vectors, regardless of the shape of the elements. 

Actually, total (global) annihilation of these vectors in bounded domains occurs only in the 
case of Neumann (natural) or periodic boundary conditions. However, even in the more 
common case wherein Dirichlet conditions are applied on at least part of the boundary, local 
‘2Ax waves’ (whose effects are deleterious) can be generated. Thus, it is often desirable to 
provide some sort of control in the form of damping. 

The technique we employ to deal with these problems was (we believe) devised by 
Goudreau and Hallquist” and is first described for equal-sized elements: simply form the 
outer product of each null space vector with itself at element level (xxT where, e.g. 
xT = (1 -1 1 -1) for 2D), multiply the resulting hour-glass matrix (or matrices) by the 
diffusivity and, if necessary, by a tuning constant (scalar) which is dimensionless in 2D but 
must have units of length in 3D, and add the result to the 1-point quadrature diffusion 
matrix. The additional ‘diffusivities’ provided by the hour-glass matrix are shown in Figure 2, 
both before and after being added to the 1-point diffusion matrix, as LH-lumped 
mass+hour-glass, in 2D (or $LH in 3D, where LH is the 3D hour-glass matrix)-and 
Ll+LH (or Ll+$LH). In 2D the ‘tuning constant’ is 1.0 in the figure (which is near- 
optimum, but may be a little too high-by 10-20 per cent), whereas in 3D the constant has 
been taken as h/2 for the 3D wave, where h is a linear measure of the element size. In both 
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Figure 3. The four ‘2Ax’ wave patterns on a single element in 3D 

cases the total behaviour of the effective diffusivity is clearly much improved, especially for 
short waves (which, of course, was the goal). 

It is also instructive to perform Taylor-series analysis on the various discrete approxima- 
tions to the diffusion term in (10). When this is applied to an appropriately assembled patch 
of elements, the following results are obtained for 2D: 

h2 
12 

Kfd -+ -V2T-- (Txm + ‘Iyyyy) + O(h4) (12a) 

h2 
12 

KIP + -V2T-- (T- + Tyyyy + 6Tuyy) + Ow4) 

h2 
12 

K2p += -V2 T - - (T- + Tyyyy + 4Tuyy ) + 0 (h4) (m 
(124 H + h2Tuyy + O(h4) 

and 

In the above, Kfd, KIP, K2, and H represent, respectively, the stencils associated with 
centred second-order finite difference, 1-point finite element, 2-point finite element, and the 
2-D hour-glass matrix. The first three are consistent second-order approximations to the 
Laplacian, but all are under-diffusive. The hour-glass matrix, on the other hand, leads only 
to O(h2) terms and provides some positive ‘diffusion’ to compensate for the spatial 
discretization errors of the approximating schemes. It is clearly a higher-order diffusion term, 
acts like a (balancing) truncation error, and becomes inoperative as h -+ 0. It is interesting to 
note that the results via Fourier analysis are consistent with those of the Taylor-series 
analysis, i.e. from (12) we have 

K1, + $H = K2p, KIP + iH = Kfd, Kfd -t $H = KIP + H (13) 

as also suggested in Figure 2(a); perhaps Kfd could also benefit from this trick. 
The Taylor series results in 3D are 
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with analogous expressions for the other 2D modes (Hx, and H,,), and 

H .+ o(h4)  (144 
for the 3D wave. Thus H is a presumably less significant (sixth-order) diffusive correction 
term in 3D. Since the truncation errors for K,,, are virtually unchanged from 2D to 3D 
except for the additional terms introduced by the third dimension, and the three 2D 
hour-glass matrices in 3D are all four times as large as they are in 2D, we selected h/4 as the 
tuning parameter for controlling the 2D waves in 3D problems. (As noted earlier, we use h/2 
as the multiplier for the 3D wave.) 

Returning to 2D, we present for further clarity the element level matrices for KIP and H, 
and their sum, along with the associated 4-patch stencils: 

which clearly annihilates the 2A.x by 2Ay wave, 
1 -2 1 

1 -1 1 -1 

-2 
-1 1 -1 

and 

Thus far, the discussion has been restricted to uniform grids and isotropic diffusion, 
whereas in practice one is often dealing with anisotropic diffusion and non-uniform, distorted 
elements. In these cases, the selection of the appropriate scalar multipliers for the hour-glass 
correction matrices is not nearly so straightforward, especially in 3D. Our approach thus far 
has been the following: 

(1) In 2D we use the same hour-glass coefficient discussed above, and treat anisotropy 
simply by using the average value of the diagonal diffusivities. 

(2) In 3D, the same coefficients (h/2 etc.) are still used, where h is now an estimate of the 
average element length and is used for all elements. Anisotropy is treated similarly as 
in 2D. 

Further remarks 

(i) These ad hoc corrective measures are surely not optimal, and further effort in this 
area is probably warranted (especially when strong anisotropy is present in the 
diffusion tensor and/or when large element aspect ratios are employed). 

(ii) Similar corrections may also be beneficial in those finite difference methods which are 
also under-diffusive for short waves. 
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(iii) Sometimes we do not even use the hour-glass correction, which may be useful as 
another 'wiggle signal' & la Gresho and Lee;7 it is only needed when there is significant 
energy in the short waves (i.e. in 'tough' problems). 

4. TIME INTEGRATION 

4.1. The basic algorithm 

(3b), and (4) leads to 
Application of the explicit Euler method to the differential-algebraic system given by (3a), 

%+ 1 =z U, + AtM-'[fn - K(u,) U, - CPnI (15) 

where u, (satisfying CTu, = 0) and T, are available. Clearly (17) must first be solved for P,, 
before the velocity can be advanced in time. This fact, plus the common vectors appearing on 
the right-hand sides of (15) and (17), leads to the following algorithmic implementation: 

(1) Form part of the acceleration vector (sans pressure gradient): 

an = M - ' [ f n - K ( ~ ) ~ l  
(2) Form the 'divergence' of this acceleration and solve the consistent discretized Poisson 

equation for the pressure: 

AP, = CTa, 

(3) Update the velocity by integrating the total acceleration: 

%+I= ~ + A ~ ( G - M - ~ C P , ) ,  

(4) Finally in an uncoupled step, update the temperature field via (16). 

This is the basic method. Before embellishing it with two cost-effective modifications, we 
make the following 

Remarks 

(i) Since this element is endowed with two 'pressure modes' in 2D and 'many' in 3D 
(non-trivial vectors, Pm, such that CP, = 0; see Reference 6), some care must be used 
when solving (17) since A is singular when one or more of these modes is present. 
The simplest technique is to (properly-see Reference 6 )  specify a pressure for each 
mode that exists (after verifying that the algebraic system is well-posed, i.e. that the 
'consistency constraints' on the velocity BC's are satisfied, 2 la Sani et aL6, thus 
rendering A positive-definite. We assume henceforth that pressure modes have been 
properly disposed of. 

(ii) Since the A matrix is symmetric and invariant with time, we have (thus far) used a 
direct method (Gaussian elimination via the profile, or skyline, method) to solve the 
discrete pressure Poisson equation. We use an efficient, highly-vectorized code de- 
veloped by Taylor et al?* to  factor the A matrix in a preprocessor code (A = LDLT, 
where L is a lower triangular and D a diagonal matrix). The factored matrix is stored 
in memory (for small 3D problems and essentially all 2D problems) or  on disk (for 
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most 3D problems) for later use by the main code. During the time integration, each 
pressure update is obtained by reading the disk fde (when necessary) and performing 
one forward reduction and back substitution. 

(iii) The pressure obtained from (17) ensures that CTUn+, = 0, independently of the 
magnitude of At, another (essential) attribute of the consistent Poisson equation. (The 
proof of this assertion is direct: insert P, = A-lC?a, from (17) into (15) and multiply 
the result by C’.) 

4.2. The key problem with forward Euler 

Many practical solutions of the NS and AD equations are in the regime called advection- 
dominated: Re >> 1 and/or Pe >> 1. It is in this important regime that the explcit Euler method 
is at its worst: the stability limit on At is so stringent that the basic method could hardly be 
called viable. In this section we will explain the cause of this instability and in the next, 
present an effective remedy which we believe is crucial to the cost-effective implementation 
of this explicit scheme. The entire presentation will be centred around the AD equation, 
which is (at least for this purpose) a valid prototype of the NS equations. 

4.2.1. Forward Euler and negative difisivity. In Appendix I, we review the necessary and 
sufficient conditions that the following generalized AD equation be well-posed: 

aT 
at 
- = V . [(K . V-U)T] 

where K is a symmetric but (generally) anisotropic diffusivity tensor and V . u = 0. The results 
presented there will be needed below. The next step is to determine the effective spatial 
operator when the forward Euler method is used to integrate (18) in time. Defining the 
spatial operator 

L s V .  ( K .  V-U) (19) 

for convenience, (18) becomes 

_-  - LT aT 
at 

Given the solution T,, at time t,, the exact solution, T(Lsl), at time 
(formally) by 

= t,, + A t  is given 

which, using (20), can be written as 

T(t,+,) = T, +At(LT), +- [ (L2T) + - T )j+ ow31 
2 

Now consider integrating (20) with the forward Euler method and ask: ‘for what approxi- 
in place of L, equivalent, mation to L, say L, is the forward Euler integration of (20), with 

in some sense, to the exact result given by (22)?’ The approximate problem is thus 

Tn+l = T,, + At(LT), (23) 
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and we can obtain to within O(At2) by equating T,+, to T(tn+,); the result is 

where 

and 

- 
A t (  3 L=L+-- L +- 
2 

L2T=L(LT) 

T = V .  [((aK/at) . V-aa/at)Tl 
at 

To reveal the basic problem with forward Euler, we now focus on those portions of which 
would display second-order dissipative behaviour and assume that K is independent of time. 
This leads to 

At 
2 

LT=LT+-V. [uV. (uT)]+O(At) 

A t  
2 

=LT+-V. ( U U .  VT)+O(At) 

since V . u = 0. Now let 

7.. E 4%. 

7 is a symmetric, positive semi-definite and singular matrix, which need not deter us at this 
point (and will even be used to our advantage later). 

Thus we have, finally, 

LT=V. [(K+$T). VT-nT] 

i.e. we see that the exact integration of (18) is 'equivalent', in the sense described above, to 
O(At), to the forward Euler time integration of 

- + u . V T = V .  
dT 
at 

It also follows that if forward Euler is applied to the true spatial operator (19) then the result 
is equivalent (in the same sense) to the exact integration of 

at least through second-order diffusion terms. 
We have thus shown that the straightforward application of forward Euler to the AD 

equation reduces the effective diffusivity from Kij to Kij - 4% At/2 and that this reduction is 
ostensibly completely independent of spatial discretization. This, we claim, is the key 
problem when explicit Euler is used to integrate the AD and/or NS equations. 

Remarks 

(i) Note that the problem is, as usual, caused by the advection term, i.e. since V . u = 0,  
v . l .  v =  (n . vy. 
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(ii) A similar reduction in diffusivity is ostensibly inherent in other (but surely not all) 
explicit schemes. 

(iii) If the implicit analogue of forward Euler (backward Euler) is considered instead, the 
same analysis carries through but with opposite sign; backward Euler increases the 
effective diffusivity by the same amount that forward Euler reduces it. (This helps 
explain the well-known ‘extreme stability’-via excessive damping-of this scheme.) 

(iv) In Section 4.3 we shall show (in the obvious way) how to fix this problem. 

We are now ready to address the stability limits associated with explicit Euler. 

4.2.2. Necessary conditions for stability. Since the effective diffusivity associated with 
forward Euler is 

Kij Kij - qq At12 (30) 

it is possible (given that Kii is positive definite) to obtain some a prion (i.e. before spatial 
discretization) stability limits simply by requiring that Eii also be positive definite. We thus 
apply the results of Appendix I to the matrix in (30) to obtain 

(9 

(ii) 

(iii) 

At <2K,/u2 

At  < 2K2/v2 

in 2D (3D results are quite lengthy, and seem not to serve any additional useful purpose), 
which we claim are necessary conditions for the stability of any spatial discretization scheme 
that does not effectively increase the physical difisivity via the advection terms. (E.g. this 
result does not apply to many upwind schemes.) 

Remarks 

(i) The third inequality in (31) is the limiting one (it includes the first two). The 

(ii) If K,, = 0, the stability requirement is 
denominator in this inequality is always positive since Kii is positive definite. 

At < l / (u2/2Kl  + v2/2K2) (32) 

(iii) The allowable At decreases rapidly as the velocity increases. 
(iv) Explicit Euler is unconditionally unstable in the absence of diffusion (i.e. for pure 

4.2.3. Necessary and sufficient conditions for FTCS. Some stronger stability results are 
available for a special case of spatial discretization using the simplest centred difference 
approximations (FTCS; forward time, centred space) and with the following additional 
restrictions: 

advection), a well-known fact. 

(i) P is constant. 
(ii) K is diagonal and constant. 
(iii) The mesh is uniform. 

Under these conditions we have the following necessary and sufficient conditions for the 
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stability of explicit E ~ l e r : ’ ~  

A t  I 1/ 2 2Kj/Axj2 
j = 1  

and 

(33) 

(34) 

where n = 1, 2 or 3 describes the spatial dimensionality. 

Remarks 

(i) Inequality (34) is a generalization of (32). 
(ii) Introducing grid Peclet numbers, Pi = q Axi/2Kj, it follows that (33) prevails (is more 

restrictive) when all Pi <I, (34) prevails when all P i > l ,  and both inequalities are 
required otherwise. 

(iii) Inequality (34) is especially restrictive when any (or all) P, >> 1; e.g. in 1D, it can be 
expressed as c 5 1/P, where c = u AtlAx is the Courant number. 

(iv) Although the corresponding results are not yet available for the 9-point stencil (2D; 
27-point in 3D) associated with our modified FEM scheme, we believe that they will 
be found to be not too different from these. 

4.3. Balancing tensor difisiuity 

Since the basic problem with forward Euler integration is the reduction in the effective 
diffusivity, and the concomitant stringent stability limit, it seems natural to consider an a 
pn‘ori modification which, theoretically at least, will cancel this deleterious portion of the 
truncation error. To this end, the technique we have adopted is simply to augment the 
physical diffusivity by ‘exactly’ that amount (implicitly) subtracted via explicit Euler, i.e. we 
use (Kii + %uj At/2) as the diffusivity (or viscosity, in NS) where (for our purposes) & is taken 
to be the (spatially and temporally varying) centroid advection velocity referred to earlier 
(see (6c)’) and the correction is applied element-wise at each time step. For AD, it simply 
means that we solve (28) rather than (18). We call this simple trick ‘balancing tensor 
diffusivity’ (BTD) and note that: 

It is not new. BTD has been previously discussed and applied to NS by Dukowicz and 
R a m ~ h a w ~ ~  using a different spatial discretization (recall that our derivation suggests 
that its utility is essentially independent of spatial discretization in that it was derived 
from the continuum equation in space). 
Since cross-derivatives must be approximated, it cannot be used on the simplest 
(FTCS) finite difference mesh (5-point stencil in 2D, 7-point in 3D); the spatial 
discretization necessarily involves at least a 9-point stencil in 2D and a 19-point stencil 
in 3D. (The FEM scheme uses a 9-point stencil in 2D and a 27-point stencil in 3D, the 
additional 8 nodes representing the corners of a ‘brick’ composed of 8 elements.) 
In the hyperbolic limit (Kij = 0), the scheme becomes a member of the popular family 
known as Lax-Wendroff methods,25 the 1D version of which is also called Leith’s 
method .26 

The implementation of BTD via 1-point quadrature is conveniently accomplished via 
the C-matrix, e.g. with T~~ = &aj, 

- acPi T,, a(pi ?;. diR = iikii,C{~’C~~’7;./iR, (no sum on e). I, ax, ax, 
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(5)  If K is time-dependent (perhaps implicitly), the BTD term would presumably be 
augmented by (At/2) dK/at = (K,, -Kn-&2. (We have not explored this aspect of the 
‘problem’ with forward Euler.) 

Further discussion and analysis of BTD and its effects will be presented in subsequent 
sections. 

4.3.1. Stability of the improved scheme. Since the negative diffusivity of explicit Euler is 
‘cancelled’ via BTD, it follows that the stability limits should be more generous, at least for 
advection-dominated flows, and this in fact occurs. In lD,  the analysis is simple and the 
results precise; in multi-dimensions, we have not yet succeeded in completing the stability 
analysis, although we have a large database of numerical experience which have proved 
useful. The bottom line, for advection-dominated flows, will be seen to be basically this: the 
stability limit is set by the well-known CFL condition for hyperbolic problems (advection- 
dominated flow is ‘nearly’ hyperbolic): the fluid should not move more than one grid point 
per time step. For diffusion-dominated situations, ( R e  << 1, Pe << 1) the stability limit is 
believed to be similar to that given by (33); but see Reference 23. 

For the constant coefficient AD equation in lD,  spatially discretized via lumped mass 
FEM and linear basis functions (or, equivalently, FTCS), the (uniform mesh) stability limit 
isz3 

At I hx2/{K(1 + J[1+ (uAx/K)~J) 

c I2P/( 1 + J[ 1 + 4P21) 

(354 

(35b) 

or, in terms of the Courant number and the grid Peclet number 

For P + 0, this yields the standard diffusion-limit (At I Ax2/2K), whereas, if K -+ 0 (P + a), 
we have c 5 1 as the stability limit, where we recall (cf. (34)) that the unmodified scheme is 
unconditionally unstable in this hyperbolic limit. 

In 2D and 3D, the detailed stability analysis has thus far proved intractable (with or 
without BTD) and we have typically had to be content with applying (33) in general and (35) 
in regions where the flow is approximately ‘locally one-dimensional’, although we do have 
the following necessary and sufficient condition for pure advection: Ci c i . 5  1. Fortunately, 
this approximate technique usually works reasonably well (of course the grid Peclet number 
is replaced by the grid Reynolds number for NS), although some trial and error is sometimes 
required. 

4.3.2. Accuracy. Consider the constant coefficient AD equation with BTD in lD, 

which is to be integrated in time via explicit Euler and discretized in space via FEM using 
linear basis functions (with lumped mass). If we define the local truncation error (LTE) as 
T;+’- T(jAx, (n+  l)At), where j is the grid point index, n is the time level, and T(x, t )  
denotes the exact solution, a Taylor series analysis in space and time leads to 

At 
(KTy-2uF3 + u2 At2 Ax2 T - -  At2 (KTy-2uT‘;) + O(At Ax4) + 0 ( A t 3 )  

J 2  
LTE=- 

12 24 

where T: = aT(x,, nAt)lax, etc. 
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Remarks 

The local error is O[A~(AX~+KA~+A~')].  The global error (in time) is obtained by 
omitting the At factor; thus, 
If K = 0 ,  the global error is O(Ax2+At2), ii la Lax-Wendr~ff.'~ 
If K f O  and fixed, the global error is also O(Ax2+At2) when stable, since then 
KAt 5 O(Ax'). 
In both cases, this is usually regarded as second order in space and time, although the 
definition of 'order' may be somewhat ambiguous. 
The performance of the scheme away from these asymptotic limits (especially P >> 1) is 
probably more important, in a practical sense. 
Similar remarks apply (we hope) to multi-dimensions. 

4.3.3. Damping and phase speed. In this section we summarize the performance of the 
pure advection scheme (with BTD) in one and two dimensions. 

4.3.3.1. One dimension 
The analysis begins with the pure advection form of (36) for the continuum, 

aT aT 
-+u-=o 
at ax 

and its discretized equivalent which, using BTD (otherwise it is unstable) on a uniform mesh, 
is 

If a single Fourier mode, eikx, is used as an initial condition, the exact solution of (38) is 

(40) T ( ~ ,  t )  = eik(x-ut) 

a pure translation at speed u and unit amplitude (the true solution has no damping). If the 
same initial condition, expressed now as eikS =eikiAx, is used in (39), the solution can be 
expressed as 

where r (the amplitude factor) and up (the approximation to  the phase speed, u) are obtained 
by inserting (41) into (39); the results are 

I (41) 
T<n) = ,.neikO'Ax-uDnAt) 

r = [~ -C ' (~ - -C ' ) (~ -COS P)']~'' 
and 

1 c sin /3 
up/u = - tan-' 

Pc 
where p =  kAx and c ~ u A t l A x  are the dimensionless wave number and the Courant 
number, respectively. We first examine the asymptotic behaviour by fixing k and letting 
At -+ 0 and Ax + 0 in such a way that the computation would remain stable (i.e. we require 
c 9 1). The results are 

and 
r = 1 - c'(1 - c2)/3"/8 

up/U == 1 - (1 - c2)p2/6 

(434 

(43b) 
where higher order terms have been neglected. 
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Remarks  

(i) Since r - - ( k h ~ ) ~ ,  the scheme is spatially fourth-order dissipative (this result is also 

(ii) The scheme is second-order accurate in phase speed. As At 3 0, the phase speed is 

(iii) Finite At helps compensate for this lagging phase speed by introducing leading phase 

(iv) Damping is absent and the phase speed is exact if c = 1 (from (42)). 

Figures 4 and 5 show how r and u,/u vary over the entire range of 0 and c, with the key 
observation being that, over all resolvable wavelengths (0 5 k 5 T / A x )  time integration error 
(0 < c < 1) increases both damping and phase speed, the latter helping to compensate for the 
lagging error caused by spatial discretization. Also, for 1/J25 c 5 1 and k A x  = T, up/u = l /c  
or up = A x / A t ;  the 2 A x  wave moves one grid point per time step. Not only does BTD cause a 
previously unstable method to be stable (for c 5 l), it also enhances the accuracy as At is 
increased toward the (Courant) stability limit. 

These desirable effects are further demonstrated in Figure 6 which shows some results 
from the AD equation solved on the unit span with 100 (lumped) linear elements (FT'CS) 
and periodic boundary conditions. The initial condition is a Gaussian wave with u = 2 A x  = 
0.02 centred at x = 0-5. The velocity is 1.0 and the diffusion coefficient is 0.001 which gives 
a Peclet number, P ~ = u u / K ,  of 20 and a grid Peclet number of 5.  The exact solution, 
qx, t )  = e-(x-xo--ut)z/(2u*+4 Kt)/J(l + 2 d / a 2 ) ,  is shown at t = 1.0 (dotted) along with three num- 

available from (37)). 

always lagging (up< u ) ;  it is given by u,/u = sin PIP. 

speed (c2p2/6). 

erical results: (1) FTCS using a small At to (nearly) eliminate time 
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Figure 4. 1D amplitude factor vs wave number at several values of Courant number 
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Figure 5. 1D phase speed vs wave number at several values of Courant number 
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Figure 6. Advection and diffusion of a Gaussian wave 
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(At = 0-0002 which is 10 per cent of the stability limit, giving c = 0.02), (2) FTCS at its 
stability limit (At = 0.002, c = 0.2) and (3) FTCS plus balancing diffusion at its larger stability 
limit (At = 0.00905, c = 0.905). Clearly the result using balancing diffusion is superior and at 
reduced cost owing to the larger time step. The result in curve (2) shows the typical 
oscillatory solution associated with pure advection on a too coarse mesh, thus corroborating 
the earlier analysis which predicts an effective diffusivity of zero at the stability limit. 

4.3.3.2. Two dimensions 
If the foregoing analysis is repeated for the 2D AD equation, using lumped mass, l-point 

quadrature, and BTD, it becomes long and tedious and the results depend on 4 parameters 
(PI = klAx, p2 = k,Ay, c1 = uAt/Ax and c2 = vAt/Ay) rather than just two. Here we will only 
present results for a special case in which the dimensionality is reduced from four to two: we 
take p1 = p2 = p and c1 = c2 = c, which corresponds to a velocity directed ‘diagonally’ through 
the grid points (recall Ax and A y  are constant) and a wave number vector directed at the 
angle (.rr/2- 8), where 8 is the angle of the velocity vector (tan 8 = v/u = Ay/Ax). The results 
are (to lowest order) 

and 
r = 1 4 p 4  

U,/U = 1 -(5 - 8c2)p2/12 

which are similar to those in 1D. 

Remarks 

(i) Again the scheme is fourth-order dissipative. 
(ii) Again the phase speed is second-order accurate and is spatially lagging, but less so for 

(iii) Ostensibly the situation is not too different in 3D. 

Leaving the asymptotic region, Figures 7 and 8 show the amplitude factor and phase speed 
over the full range of p and c (still for the special case) and the following remarks apply: 

(i) The behaviour is generally less desirable than in 1D. 
(ii) The stability limit for this case is c 5 1/ J2. (It is 1 c: I 1 in the more general case.) 

(iii) Time integration error improves the phase speed, but much less so than it does in 1D. 
(iv) Damping is slight for short waves and totally absent for the infamous 2Ax (by 2Ay) 

finite At  (time truncation error again reduces phase error). 

wave, which is neither damped nor advected. 

This last item, a direct consequence of the problem with diffusion discussed earlier, is 
ostensibly a cause for concern-at least if pure advection simulations are of interest. (In our 
experience with advection-dominated flows rather than pure advection, the hour-glass 
correction to the diffusion terms has generally been effective in controlling short waves.) In 
this regard then, we will show the results when the hour-glass correction is appended to the 
BTD diffusion term (both temporal and spatial truncation error corrections applied simul- 
taneously to the same term). The ‘diffusion coefficient’ that multiplies the hour-glass correc- 
tion matrix is naturally different for pure advection. Although we have not yet actually 
implemented such a correction term in our codes, some preliminary analysis suggests that the 
coefficient should be of the form aAx Ay(cl + c2)’/At, where (T is dimensionless. For (T = 
1/32, the results for the same special case are shown in Figures 9 and 10 for r and u,/u, 
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Figure 8. 2D phase speed vs wave number at several values of Courant number 
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Figure 9. Same as Figure 7 except with hour-glass correction 
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respectively, wherein we observe: 

to reduce the stability. 

2Ax wave is completely damped in a single step.) 

(1) The stability limit is slightly improved (c  5 -0-75)-larger or smaller values of (T seem 

(2) Damping of the short waves is, as desired, recovered. (Now, as in 1D, if c = 1/J2, the 

(3) The phase speeds are further improved as At  is increased toward the stability limit. 
(4) A similar diffusion-like term, with a scalar coefficient more like (u2+u2) At/2, was 

suggested 20 years ago by Lax and Wendr~ff?~  albeit for different reasons, since their 
scheme does damp the 2Ax wave. 

By studying similar curves for other values of 0; we observed (for this special case of one 
0, one c) that (T = 1/32 appears to be nearly optimum regarding stability, damping and phase 
speed. Clearly, however, more work in this area is required if pure (or nearly pure) advection 
simulations are of interest in situations which are prone to generate short waves. 

In concluding this section, we remark that we have solved the (pure advection) ‘rotating 
cone’ p r ~ b l e m ~ ~ . ~ ’  on a uniform grid using BTD (necessarily) but no hour-glass correction. 
The results were reassuring in that the fidelity was essentially equivalent to that observed by 
Orzag28 when Arakawa’s second order scheme is used, i.e. noticeable phase error and 
dispersion, but no obvious artificial diffusion, crosswind (see below) or otherwise. Also, the 
accuracy improved as the Courant number was increased toward the (poorly defined, in this 
case) stability limit, in accord with the theory. Thus, although the advection scheme we 
employ is far from perfect, and requires the use of (easy to apply) truncation error correction 
terms, it has nevertheless proved quite useful and, especially, cost-effective. 

4.3.4. Steady state, streamline upwinding, wiggles. Since the ‘problem’ with explicit Euler 
and its correction via BTD were analysed using a Taylor-series expansion in time, it follows 
that neither the correction nor the underlying analysis apply to steady-state flows (for which 
the ‘problem’ does not exist). The question that naturally arises then is: what happens if a 
simulation in which BTD is employed approaches or attains a steady state? The first reaction 
might well be that the BTD terms are completely inappropriate for such cases and if they are 
employed: (1) the scheme is overly diffusive and (2) the steady-state results are a function of 
At(!).’” Both of these assertions are true, yet we have found (and will demonstrate) that 
BTD is also useful (and always cost-effective) for steady-state simulations. Thus, in this 
section we will attempt to justify the use of BTD for simulations which tend toward steady 
state, as well as re-addressing the subject of wiggles.’ 

First, and most importantly, we point out that the added tensor diffusivity is operational 
only in the streamline direction (as is indeed the problem with explicit Euler); there is no 
deleterious crosswind diffusion which has been the bane of many upwinded methods. (See 
also Brooks and Hughes,“ who advocate a very similar form of streamline upwinding as a 
means of controlling the wiggles sometimes caused by the advection terms in GFEM models, 
quite independently of time integration effects.) This can be demonstrated in 2D most simply 
by applying a pure rotational transformation to the Cartesian tensor diffusivity such that the 
resulting diffusivity is represented in the streamline (and normal) co-ordinate system. Thus, 
with ISii = kuj At/2, consider the transformation 

K=RTKR 
where 

(45) 

cos 8 -sin 81 - , I  [ u -;I 
sin 8 cos 8 u1 u 

R =  [ _ -  
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is the appropriate rotation matrix (to streamline and normal co-ordinates; tan 8 = v/u) and K 
is the representation of K in the rotated co-ordinate system. The result is 

1 u2+v2)At /2  0 
0 0 

showing added diffusivity only in the streamline direction, and is related to the singularity of 
T mentioned earlier-after (26). (The analogous result also obtains in 3D.) By contrast, if 
simple upwinding of the form (for ui > 0) Kii = (4 A X J ~ ) $ ~  where 6, is the Kronecker delta is 
employed, the transformed result is 

3 u3 AX + v 3  AW UV(W Ay - u AX) 
uv(u Ay + v Ax) 

8: 

which can cause excessive diffusion across streamlines, e.g. when u = w (cf. also References 
31 and 32);  here K (and, of course, K) is positive definite rather than positive semi-definite 
(i.e. it is diffusive in all directions). 

Secondly, it is of interest to attempt to estimate the ‘effective Reynolds number’ in the 
case of steady-state (or slowly time-varying) simulations; i.e. even streamline upwinding 
could (will) still be called deleterious by some purists. To this end we write Re 3 uoL/veff with 
vefi = v + u,’ At/2, where u, is the velocity along a streamline. (The Reynolds number, from 
the above discussion, is only affected along streamlines; thus we are examining the worst 
case.) The effective local streamline Reynolds number is therefore 

(46) 
Re0 - - Re0 Re = 

1 + ua At/2v u~ Ax %At 1 +& Re, -- - 
uo L Ax 

where Re, = uoL/v >> 1 is the nominal Reynolds number and Ax is a generic grid spacing. 

maximum permissible time step is used (the normal goal), we have u, At/Ax = 1 so that 
Consider first a region of ‘high-velocity7 flow, i.e. where uT=uo. If, in addition, the 

Re = R e o / (  1 +$Re, *) 
L 

a result ostensibly equivalent to that obtained with simple upwinding, wherein veff = 
v + uAx/2. If Re, AxlL >> 1 (large grid Reynolds number), the effective Reynolds number is 
clearly much less than the desired one (but only in the streamline direction, an important 
result not obtained with simple upwinding). An example of this ‘worst case’ would occur on a 
streamline just below the lid in the lid-driven cavity problem. In cases like this, however, it 
seems that the results of the simulation are not seriously degraded as long as Re >> 1, i.e. if 
the flow along such a streamline is still advection-dominated. This merely requires Ax/L << 1, 
a reasonable requirement in any case. Another important, and quite different, case of 
interest is related to low-speed regions of the domain, such as a recirculation eddy where the 
true local Reynolds number may be much smaller than Re, and significant streamline 
upwinding could ostensibly be quite harmful. In these cases, however, we would usually have 
uT/uo<< 1 and, thus, the local Courant number u, AtlAx, is also <<l. Since also AxlL << 1, we 
can see from (46) that the reduction of Re from Reo will be much less than before. This 
interpretation helps to account for the success (on good meshes) of the streamline upwinding 
technique in capturing the details of fine structure associated with low-speed secondary 
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flows, although the primary argument is still the complete lack of artificial diffusion normal 
to streamlines. We will demonstrate both of these points in Part 2 of this paper. 

What about wiggles? Is streamline upwinding just another wiggle suppressant: generating 
smooth but inaccurate results? Our answer is simple to state: yes and no. It does a ‘good‘ job 
of wiggle suppression relative to GFEM, but a ‘poor’ job relative to the more conventional 
‘simple’ upwind methods (e.g. donor cell or hybrid schemes). Consistent with the philosophy 
expressed by Gresho and Lee,7 we are suspicious of schemes which never wiggle; thus, to 
conclude this section we will show that the streamline upwind scheme (i.e. BTD applied to 
steady flows) does send out wiggle signals for problems too difficult for the selected mesh. 
but they may not be very strong. 

We begin with the classic 1D prototype model; steady advection-diffusion with Dirichlet 
boundary data: 

u - = K -  dT d2T O < x < l  
dx dx2’  

T(0) = 1, T(1) = 0 

For Pe = ul/K >> 1, the solution to (47), which is 

(47) 

undergoes all of its interesting variation within a distance O(l/Pe)  of the downstream 
boundary and is the classic ‘tough problem’ that can give a numerical scheme a bad case of 
the wiggles. The reasons that we even consider such a model are two: (i) it represents sort of 
a limiting case of a multidimensional situation in which there exists a strong gradient (in the 
transported variable) along a streamline, and (ii) it is very simple to analyse. (The former 
reason is clearly more important.) 

The discretized form of (47)’ using BTD, is 

for j = 1’2, . . . , N -  1, To = 1, TN = 0, and Ax = l/N. The solution of this difference equation 
is 

where p [l - P(1- c)]/[l+ P(1+ c ) ] ,  P = u Ax/2K is the grid Peclet number, and c = 
u At/Ax is the Courant number (which is bounded by (35b) for stability, i.e. we consider (49) 
and (50) to have been obtained by a time integration to steady state), 

Remarks 

(i) c = 0 (i.e. the absence of time truncation error) corresponds to GFEM (or FTCS) and 

(ii) The effective grid Peclet number is P = P/(1+ cP),  so that c = 1 corresponds to pure 

(iii) p = 0 at c = cmm= 1 - U P ;  IT; = 1 for all j C N ,  another method of wiggle suppres- 

p = (1 - P)/(l+ P ) ;  this is the infamous wiggle maker. 

upwinding, the infamous wiggle suppressor. 

sion. 
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In Figure 11 are shown some plots of (50) for Pe = 480, 1 = N =  24 ( P  = Pe Ax/21= lo), for 
which the outflow boundary layer thickness is i3 = WPe = 0.05 and thus not resolvable by the 
chosen mesh (for which Ax = 1). The stability limit (cf. 35b) is c ~ 0 . 9 5  and we present 
results for 0 5 c ~ 0 . 9 .  The largest wiggles are associated with GFEM (c = 0) and the wiggle 
amplitude is seen to decrease monotonically and rapidly as c increases. The main result is 
that there are indeed wiggles for 0 < c < cmax, even though they are small compared to those 
with no BTD. 

Moving to 2D, we now consider the steady solution of (lb) for several Peclet numbers with 
a prescribed velocity field corresponding to flow over a step at Re = 200 (cf. Reference 33). 
The velocity field shown in Figures 12(a) and 12(b) was used to solve the steady AD 
equation for several values of Pe : Pe = Re = 200, Pe = 2000 and Pe = 20,000, both via 
GFEM (4-node element) and via our 1-point quadrature scheme with BTD and diffusive 
hour-glass correction, using At  = 0.01 (about 1/2 of the experimentally-determined stability 
limit). The boundary conditions for this hot step problem are: T = 0 at the inlet, T = 1 on the 
three sides of the step, and XI’/an = 0 elsewhere. Since the mesh was designed to provide a 
good velocity solution at Re = 200, the results from the AD equation at Pe = 200 should be 
about equally good, and indeed this is verified in Figure 12(c) and 12(d), for which G E M  
and our current scheme show good agreement. (Also, the result with A t  = 0-02 is essentially 
(visually) the same as that presented, showing that streamline upwinding has a negligible 
effect, even though u: A t / 2 ~  is as large as 5-10.) Figures 12(e)-12(h) show the corresponding 
results when the mesh is ‘pushed beyond its design point’: namely for Pe = 2000 and 
Pe = 20,000, respectively. The results more or less corroborate those from 1D; the GFEM 
scheme generates much larger wiggles upstream of the step than our current scheme, but the 
latter scheme does indeed send out a recognizable wiggle warning. 
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Figure 11. 1D steady-state advection-diffusion for several values of Courant number 
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Pe = 20,000 

Figure 12. 2D advection-diffusion for flow over a step: (a) and (b) give the flow field; (c), (e) and (g) are from 
GFEM; (d) (f) and (h) are from the present scheme 

Additional remarks: 

In these Figures, both GFEM and our current scheme give T>O in the downstream 
recirculating eddy for Pe 52000, and both yield the spurious result (and strong wiggle 
signal) T<O in this eddy for Pe = 20,000 (Thn is - -2 for GFEM and - -1.6 for 
our modified scheme). Simple upwind schemes will never yield T<O, consistent with 
their too-strong tendency to suppress wiggles by adding numerical diffusion. 
The hour-glass correction term (diffusion term only) was ‘essential’ for the high Pe 
runs; without it, the entire region above the step was even more polluted with 2 A x  by 
2 A y  oscillations, which are only partially damped even with the hour-glass corection 
when the diffusion coefficient is small. The fact that these spurious waves are basically 
normal to the streamlines above the step is a manifestation of the absence of 
crosswind diffusion via BTD. These oscillations would probably be further reduced if 
we had also applied the ‘advection’ hour-glass correction (discussed earlier) to the 
BTD terms. 
The steady-state solution via BTD seems to  be a rather weak function of At, even for 
advection-dominated flow. 
If we had not used BTD, the (approximate) stability limits on At (cf. (34)) would have 
required time steps of At = 0.001 (Pe/200), i.e. an order of magnitude smaller than 
that used for Pe = 200 and 3 orders of magnitude smaller for Pe = 20,000. 

This last remark emphasizes the reason that we continue to employ BTD even when 
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steady-state solutions are sought or attained: the calculations without BTD would cost about 
P times as much, where P is the largest grid Peclet number (or Re for NS), but would not be 
noticeably more accurate. 

In closing we state: in practice, we often see wiggles when a difficult problem is first 
attacked (for time-dependent as well as steady-state calculations); as in GFEM, we regard 
these signals as a warning regarding the quality of our mesh design. 

4.4. Internal gravity waves 

In dealing with stably-stratified flows, it is well known34 that an additional phenomenon 
can occur: internal gravity waves. Since we have had some experience, and some diff i~ul ty ,~~ 
with simulations of this type, it seems fruitful to summarize the type of problem (instability) 
that can occur and to describe a successful method for overcoming this problem (another 
modification to the time integration scheme). 

A simple, but non-trivial example can be generated by considering a 1D linearized subset 
of the Boussinesq equations involving only vertical velocity, v(x, t ) ,  and temperature, 
T(x, t)-perturbations about a motionless base state with a linearly increasing temperature: 

where @ = dTo/dy > 0 is a constant (the base state temperature gradient). Setting initial 
conditions v(x, 0) = vo cos kx and T(x, 0) = 0, where k is an arbitrary horizontal wave 
number, the solution of the initial value problem (or the corresponding periodic initial- 
boundary value problem) is 

v = v,(cos o t  + [k2(tc - v)/2w] sin wt) cos kxe-kZ(v+K)t’2 
T = -( pvo/o) sin o t  cos kxe-k2(v+K)1’2 

o2 = N~ - N: > o 

(524 
(52b) 

(524 
where 

N = J(@yg) is the buoyancy frequency 
Nc= k2 / K  - v)/2 is a cut-off frequency 

Equation (52) applies for N>N,; if N<N,, the solution to (51) is one of montonic decay 
(overdamped) rather than damped oscillatory motion (underdamped). Definining o2 -= 
N2-N2>0 for this case, the trigonometric functions in time are replaced by hyperbolic 
functions in (52a, b). 

Remarks 

Oscillatory motion (i.e. internal gravity waves) exists only if N > N,; i.e. if k < kC= 
. / (~N/\K - vl), or if A =27r/k > A, = 7r&! I K  - vl /N).  
Waves shorter than A, are monotonically damped owing to a ‘mismatch’ of 
diffusivities. 
If v = K (i.e. if Pr = l), then N, = 0 and all waves exhibit oscillatory decay. 
For the limiting case of a non-conducting inviscid fluid ( u  - 0, K + 0), we have v = 
vo cos Nt cos kx, and T = -v,J(p/yg) sin Nt cos kx, the classic Brunt-Vaisala oscilla- 
tion. 
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The ‘problem’, when forward Euler is used to integrate the associated semi-discretized 
version of (51) in time, is that an additional instability can arise in the case where Y and K 

are ‘small’; in fact, in the limit (the Brunt-Vaisala oscillation), this method is unconditionally 
unstable. 

Rather than belabour this forward Euler instability (the analysis of which is lengthy when Y 
and K are non-zero), we present the ‘fix’; consider the following ‘sequential’ application of 
the forward Euler to (51) for the worst case ( K  = v = 0): 

un + 1 = un + AtygTn (534 

Tn+l= T , - A t ~ ~ , + ~ = ( 1 - N 2 A t 2 ) T n - ~  A ~ v ,  (53b) 

The amplication matrix of this scheme is 

rgAt 1 1 
A= [ 

- p A t  1 - N2At2  (54)  

i.e. (vn+* Tn+l)T= A(u, T,)T and stability requires that the modulus of each of the two 
eigenvalues of AS 1. These eigenvalues are h = 1 - N2At2/2f  i (NAt /2 )4 (4 -  N2At2) and both 
have Ihl = 1 if N A t s 2  and lhl> 1 if N A t > 2 .  Thus, the sequential method defined by (53) is 
stable and neutral (no damping-as in the continuum) if A t  5 2/N. 

Remarks 

The order of the sequence in (53) is immaterial (i.e. the temperature equation could 
be advanced first), at least for linear problems. 
The scheme (effectively) regains (conditional) stability by the inclusion of a higher- 
order term in At. 
It has been recently advocated by Sun,36 who calls it a forward-backward scheme. 
For most practical cases involving internal gravity waves, the advection-diffusion (or 
CFL) stability limits are much more restrictive than 2/N. We have not yet determined 
the combined stability limit. 

The technique has been found to work well, at a modest increase in cost (per time 
step-but the times steps can be larger). (We update the temperature equation first, then use 
the updated value in the momentum equations.) 

4.5. Subcycling 

For many cases of interest, the stability limits associated with our explict time integration 
method are still quite restrictive, even when the BTD correction is applied (e.g. there is 
nothing really sacrosanct that requires the Courant number to be <1 everywhere in the flow 
at all times-cf. implicit methods). The cost of using small time steps is especially burden- 
some for the NS equations when a pressure update is (in principle) required at each time 
step. 

To ease this problem we devised a cost-effective short cut called subcycling, which is based 
on the following premises: (i) stability often dictates a At  which is much smaller than would 
be necessary to resolve with sufficient accuracy the solution to the ODES and (ii) the 
discretized pressure gradient and associated continuity equation do not affect the stability of 
the time integration scheme. Both premises have been justified a posteriori from the results 
of many experiments and the latter has recently been upgraded to a fact, following (and 
generalizing from the L2 norm) the recent relevant analysis by Bulgarelli et al.37 
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4.5.1. A summary. A four-step summary of the subcycling strategy is as follows: 

591 

The minor (smaller, and fixed) time step is based on the stability estimates discussed 
in Section 4.3.1 and is used to (accurately) compute advection and diffusion only 
(these processes are 'subcycled') ; the pressure gradient is approximated via simple 
(linear) extrapolation and the continuity equation (or, equivalently, the Poisson 
equation) is completely ignored during subcycling. 
A constrained least-squares method (or, equivalently, a projection to a 'solenoidal' 
velocity field) is used at the conclusion of the subcycle process in order to re-enforce 
the satisfaction of the continuity equation. 
The pressure field which is consistent with the now 'solenoidal' velocity field is 
updated in the usual manner, and finally, 
The next major (larger) time step is dynamically computed based on the desired 
temporal accuracy by using a local error estimate (5 la implicit methods; see 
Reference 1). 

The overall scheme is represented graphically in Figure 13 which shows the velocity and 
pressure at three times and depicts the subcycle process between t, and t,,+l. Here ii and P 
are the approximate velocity and pressure during subcycling and u, P are their mass- 
consistent analogues (at major time steps only). The details of the procedure are described 
below. 

the solution of the following ODE% (cf. 
(34): 

4.5.2. The subcycling process. Between t,, and 

Mh + K(ii)ii + CP = f;  ii(t,) = &, (55) 

i i , + l = i i , + A t s ~ = i i , + A t s M - ' [ f , - K ( i i , ) ~ - C P ~ ] ;  (56) 

is approximated using the forward Euler method, 

where At, is the subcycle time step and rn is the subcycle index, P ( t )  is known via linear 
extrapolation, K(ii) includes the BTD correction in the viscous portion, and u,,, satisfying 
CTy, = 0, is available. This simple marching scheme is employed for a previously determined 
number, S=At,,+l/Ats, of (stable) subcycle steps (the computation of S will be discussed 
later), at which time we have ii, as an approximation to the desired velocity, u,,+~; in 
particular, it does not satisfy CTG,= 0. 

Remark 

Viewed as a continuum problem, it is clear that i is subject to the same boundary 
conditions as II. 

Figure 13. Schematic diagram of the subcycling process 
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4.5.3. The return to mass consistency. There are two equivalent ways in which to view the 
velocity adjustment process described below: 

(1) Given a discrete approximation, ii, to a velocity field which satisfies the desired BCs 
and nearly satisfies the discrete equations of mass and momentum conservation, seek a 
nearby field, v, which is ‘as close as possible’ to ii in some sense, and which satisfies CTv = 0. 
As we shall show, the appropriate way to perform this velocity adjustment is to minimize 
(u  - ii)TM(v - ii) subject to CTv = 0 or, equivalently, find the extremum of the functional 

F(v, A )  =$(v - I ~ ) ~ M ( V  - 6 )  + ATCTv (57) 

over all admissible vectors, v and A. Here A is a vector of Lagrange multipliers (one for each 
discretized continuity equation-like the pressure) and the distance measure between v and 
ii is seen to be related to kinetic energy (KE), since KE(u)=&uTMu. Setting the first 
variations of F(v,  A )  to zero yields the following Euler-Lagrange equations, 

M(v - ii)+ CA = O  
CTv = 0 

which are more conveniently solved sequentially as 

and 
(CTM-lC)A =AA = CTii 

v = ii - M-~CA 

since A is already available in factored form. Application of (59) to iis gives the minimally- 
adjusted mass-consistent velocity field at f n + l ,  i.e. KE(v - 13,) is minimal. 

At the conclusion of subcycling, we apply (59) to ii, and use z, as the best approximation to 
u ,+~ ,  the velocity obtained without subcycling. 

Remarks 

(i) A is positive-definite since any possible pressure modes have already been properly 
dealt with (as discussed earlier); thus A and v are unique. (Even if pressure modes are 
present, v is unique-when it exists. The existence of v (and A )  in the presence of 
pressure modes is a subtle point since it would appear that (58) always has a solution; 
suffice it to say here that serious difficulties will arise if the consistency requirements 
for well-posedness6 are violated.) 

(ii) Gaussian elimination is of course not the only solution method to be considered when 
subcycling is employed. It could also be cost-effective if the Poisson equations (for P 
and A )  are solved by iterative methods. In any case, the degree of cost-effectiveness is 
‘proportional to’ the fractional cost of the pressure update to advance one time step. 

(iii) The velocity adjustment is accomplished using the gradient of a scalar (i.e. M-lC- 

(2) Given the same discrete approximation, ii,, perform the unique orthogonal projection 
of ii, onto the subspace of vectors which is divergence-free (in the discrete sense). Since this 
projection must be performed using the gradient of a scalar (see Appendix II), we are led to 
(59) again. 

0). 

Additional remarks 

(i) The velocity adjustment is one of ‘potential flow’ and thus 
(ii) The vorticity associated with the subcycled velocity field is correct (i.e. it is (essen- 
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tially) as good an approximation to that without subcycling as v is to %+1, which is 
usually quite good). 

(iii) The continuous (in time) projection of ti onto the divergence-free subspace is, in fact, 
the exact soltuion of the discretized NS equations, u(t) = BTti(t)-see Appendix 11; 
the subcycling process approximates this ideal. 

(iv) The above velocity adjustment scheme is useful in other situations besides subcycling, 
namely whenever an approximation to a discretely divergence-free velocity field needs 
to be modified to the closest field which is ‘properly’ divergence-free, e.g. (1) for use 
as a valid initial condition for the NS equations, (2) for computing the stream function 
by contour integration around element boundaries-cf. Reference 38, (3) for use in 
objective analysis in m e t e ~ r o l o g y . ~ ~  

4.5.4. The pressure update. Once a mass consistent velocity field is available, the compati- 
ble pressure field, Pn+l, is obtained by solving (17), with n replaced by n + 1, i.e. the factored 
A matrix is ‘hauled out’ one more time; a fact which shows (properly) that subcycling is only 
cost-effective when S is significantly larger than 2. 

4.5.5. The next major step size. The last process in the subcycling strategy is the approp- 
riate selection of the next major step size, At,,+;? or, what is equivalent, the new subcycle 
ratio, S = At,,+,/At,. In the actual algorithm, the step-size calculation is the first process in the 
sequence rather than the last; the order of presentation was chosen to provide (we hope) 
greater clarity. 

Given y ti and P at t, and the local (single step) time truncation error, 

4 + 1 =  %+1- u(a+,> (60) 
where u(t,,+,) is the (unknown) exact solution, needs to be estimated. Assuming that u,, is 
exact, a Taylor series expansion yields 

u(t,,+i) = U, +At+ili ,  +Ati+iii,/2+ O(At:+i) (61) 
If we ignore the subcycling process, we also have 

u,+1= u, + ALSlLi, 
via the explicit Euler method. Thus 

dn+, = -At2,+1ii,,/2 + O(At:+l) (63) 

4 + 1 =  - A a + 1 ( 4 + 1 -  &)/2 (64) 

Finally, since ii, = (z&+~ - + O(At,,+l), we get, neglecting higher-order terms, 

as the local error estimate, where the acceleration vectors are obtained directly from (3a) at 
tn and L+l- 

In order to determine the next step size, we use (63) again: 

where higher-order tems in At have been neglected. To get Atnc2, we set the norm of the 
local error to be committed during the next step to a user-specified tolerance, E :  

lIdn+zll= (Aa+z/At,,+i)* ll4+1Il= E (66) 
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which yields 

A&+, = A&+l[~/I141+lI111~2 (67) 

as the next step size. In order that E represent a relative error, we employ the following 
combined, weighted RMS norm; written for a 2D problem for simplicity: 

where u, TI are now the two components of the velocity, N is the total number of nodes 
(vector length), and u,,=max ((u,+l)il and similarly for urn=. 

Remarks 
1 

(i) E = is sometimes 
required. 

(ii) If the effects of subcycling are included in the error estimate, we obtain d,,+l= 
-At, Atn+liin/2 rather than (63); efforts to control the step size using this result have 
not, thus far, proved to be as successful. (See, however, Reference 40.) 

(iii) We have taken the ostensibly non-rigorous expedient of assuming that At, is always 
small enough to give good accuracy. Thus, (1) we do not consider the temperature in 
the local error estimate and (2) if the algorithm tells us to use a step size smaller than 
At,, we simply use At, and do not subcycle (in fact, we also omit subcycling if 
A t n + , 5 2 - S  At,) based on the belief that the inherent spatial error does not warrant 
any additional accuracy in time. (See also Reference 7.) 

An overall algorithmic summary of the subcycling process may be useful; thus, given u, 

(1) Use (56) for S subcycle steps to give 6,. (Also, update T via (16), with n replaced by m 

(2) Solve (59a) for A and compute u from (S9b); set LL,,+~ = 2). 
(3) Compute the norm of the local error from (68). 
(4) Compute the next major step size from (67). 
(5) Update S (=Ar,,+,/At,) and go to (1). If S<S, (currently 3 in our code), omit 

This constitutes the the description of our numerical scheme. In Part 2 we will demon- 
strate the scheme, offer further comments regarding its viability (especially in 3D), and draw 
some conclusions. 

is usually a good choice, although a smaller vaue (e.g. 

and S,  

and At replaced by At,, during these same S steps.) 

subcycling. 
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APPENDIX I. REQUIREMENTS FOR WELL-POSEDNESS 

In this appendix we review the restrictions on the diffusivity tensor in (18) in order that the 
problem be well-posed. The symmetric diffusivity tensor is 
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in 2D and 
Kl K12 K13 

in 3D. (Note that we are no longer dealing with dimensionless quantities-for convenience.) 
In order for the associated AD equation to be well-posed (i.e. to be a parabolic partial 
differential equation), the matrix of coefficients defining K must be positive definite, which in 
turn requires, in 2D 

(9 
(ii) 
(iii) 

K,>O 
K2>0  

detK=K1K2-K:,>O 

In 3-D, the requirements are, in addition to those above, 
(iv) K3>0  
(4 
(4 

K1 K3 - Kf3 > 0 
K2 K3 - K53 > 0 

(vii) detK>O. 

These conditions are necessary and sufficient for K to be positive definite41 which we 
henceforth assume. If they are violated, (18) becomes, in part, the ‘negative heat equation’ 
and admits exponential growth in time. 

APPENDIX 11. VELOCITY PROJECTION 

In this appendix, we follow and attempt to generalize somewhat (at least in the discrete case) 
the notions put forth by Chorin and M a r ~ d e n ~ ~  regarding incompressible flow. We begin by 
defining an inner product associated with the (n x n) positive definite symmetric mass 
matrix, M :  (a, b) = bTMa, which also induces the (kinetic energy) norm llxli == ( x ~ M x ) ” ~ .  We 
now state the orthogonal decomposition 

Theorem 

Any n-vector, ii, can be uniquely decomposed in the form 

ii = v + M-lCP 

where CTv = 0 and (v, M-ICP) = 0. 

Remarks 

(i) C is the same (n X rn, n > rn) matrix defined in (6d) (or (6d)’) and P is an rn-vector. 
(ii) We will call a vector divergence-free (i.e. weakly solenoidal) if it is annihilated by CT. 

(iii) M-lCP approximates VP in the continuum. 
(iv) M can be either the consistent or lumped mass matrix. 
(v) v is the unique orthogonal projection of ii onto the divergence-free subspace. 

Proof. First we establish the orthogonality relationship: the subspace of divergence-free 
vectors is orthogonal to all vectors which are the gradients of scalars: if CTv = 0, then 
(v, M-lCP) = 0 for all m-vectors P ;  i.e. 

(v, M-lCP) = (M-1CP)TMv = PTCTU = 0 
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This orthogonality property can be used to demonstrate uniqueness of v and P. Suppose that 
two solutions exist, i.e. suppose 

or 

Now form 11v1-v2112 to give 

((~l-~,~~2=(~~-~,)TM(~~-~,)=[M-’C(P~-P,)]TM(~,-~,)=(P~-P,)TCT(~l-~2)=0 
Thus v1 = v2 and Mp’C(P2-P,)  = 0. But since we have excluded pressure modes, PI = P2 
and the solution is unique. 

To prove existence, and indeed to find the solution, we observe that (69) implies 

(C*M-’C)P = A P  = CTii (70) 

Since A is positive definite and symmetric, A-l exists and P =  A-lCTii exists (and is 
unique). Finally it follows that v can be computed directly (and uniquely) from v = 

ii - M-ICP. QED 

Additional remarks 

(i) Given an arbitrary vector ii and any divergence-free vector u (e.g. the solution of the 
discretized NS equations), it can be shown that the unique divergence-free vector, u, 
computed as above, is closer to u than is U, i.e. 

/(u - 6112 = llz, - till2+ I(u - v(I2 and thus IIu - 1111 zsIIu - ii((. 
It also follows that 1111 - ti(/’ = PTAP = (CP)TM-l(CP) = (IM-1CP(12 

(ii) The projection operation can be (formally) represented as v = BTii, where B = 
I- CA-’CTM-l. BT is a projection operator since (B7)2 = BT and BTu = v where v is 
the projection of ii onto the divergence-free subspace. 

(iii) Finally, BTMP1CP = M-IBCP = 0 since BTM-’ is symmetric and BC = 0, i.e. M-ICP 
is orthogonal to the divergence-free subspace, a restatement of the orthogonality 
condition. (The subspace of vectors which are gradients of scalars is the orthogonal 
complement of the divergence-free subspace.) 
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CONTENTS OF PART 2 
The remainder of this paper (Part 2), to appear in the next issue of the journal, contains: 
1. Numerical results for: 

(1) Lid-driven cavity 
(2) Vortex shedding behing a cylinder 
(3) Simulation of a heavy gas release 

(1) Steady-state, stability, subcycling and normal modes 
(2) 2D vs. 3D solution strategy 

2. Discussion of 

3. Conclusions 




